Abstract

Skeletal muscle is able to modify its size, and its metabolic/contractile properties in response to a variety of stimuli, such as mechanical stress, neuronal activity, metabolic and hormonal influences, and environmental factors. A reduced oxygen availability, called hypoxia, has been proposed to induce metabolic adaptations and loss of mass in skeletal muscle. In addition, several evidences indicate that muscle fiber-type composition could be affected by hypoxia. The main purpose of this review is to explore the adaptation of skeletal muscle fiber-type composition to exposure to high altitude (ambient hypoxia) and under conditions of pathological hypoxia, including chronic obstructive pulmonary disease (COPD), chronic heart failure (CHF) and obstructive sleep apnea syndrome (OSAS). The muscle fiber-type composition of both adult animals and humans is not markedly altered during chronic exposure to high altitude. However, the fast-to-slow fiber-type transition observed in hind limb muscles during post-natal development is impaired in growing rats exposed to severe altitude. A slow-to-fast transition in fiber type is commonly found in lower limb muscles from patients with COPD and CHF, whereas a transition toward a slower fiber-type profile is often found in the diaphragm muscle in these two pathologies. A slow-to-fast transformation in fiber type is generally observed in the upper airway muscles in rodent models of OSAS. The factors potentially responsible for the adaptation of fiber type under these hypoxic conditions are also discussed in this review. The impaired locomotor activity most likely explains the changes in fiber type composition in growing rats exposed to severe altitude. Furthermore, chronic inactivity and muscle deconditioning could result in the slow-to-fast fiber-type conversion in lower limb muscles during COPD and CHF, while the factors responsible for the adaptation of muscle fiber type during OSAS remain hypothetical. Finally, the role played by cellular hypoxia, hypoxia-inducible factor-1 alpha (HIF-1α), and other molecular regulators in the adaptation of muscle fiber-type composition is described in response to high altitude exposure and conditions of pathological hypoxia.

Highlights

  • Skeletal muscles are composed of heterogeneous fiber types with distinct metabolic and contractile properties

  • The majority of the studies indicates that chronic exposure to high altitude does not markedly affect the fibertype composition of hind/lower limb skeletal muscles in both adult animals and humans, at least when it is not combined with intense physical activity

  • An alteration of the fast-to-slow fiber-type transition is observed in the soleus muscle during postnatal development in growing rats exposed to severe altitude, and this adaptation is most likely the result of the reduced locomotor activity consecutive to hypoxia exposure

Read more

Summary

Introduction

Skeletal muscles are composed of heterogeneous fiber types with distinct metabolic and contractile properties. Fasttwitch glycolytic (FG) fibers have lower oxidative capacities, reduced capillary density and usually have bigger cross-section areas, while fast-twitch oxidative glycolytic (FOG) fibers exhibit intermediate properties. More recent research usually classifies skeletal muscle fiber types according to their isoforms of the contractile protein myosin heavy chain (MHC): type-I fibers, type-IIA fibers, and type-IIX/IIB fibers; these types of fibers have similar characteristics as SO, FOG, and FG fibers, respectively. It is noteworthy that type-IIB fibers are absent in human skeletal muscles (Schiaffino, 2010). Skeletal muscle has a remarkable ability to modify its size and adjust its metabolic and contractile properties to a variety of stimuli. Skeletal muscle phenotype, which is mainly determined by genetic factors, can be modulated by endogenous and exogenous stimuli, including mechanical strains and neuronal activity (i.e., contractile activity), metabolic and hormonal influences, as well as environmental factors (Flück, 2006)

Objectives
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call