Abstract

Cystathionine-γ-lyase (CSE) is expressed in various tissues and generates H2S via an alternative desulfuration reaction. We sought to explore the functions of skeletal muscle CSE using skeletal muscle conditional knockout CSE (MCSEKO) mice. It was found that body weight, muscle morphology, and exercise capacity were not altered in MCSEKO mice compared with littermate wild-type mice. RNA-seq-based transcriptome analysis showed that 275 genes were differentially regulated in skeletal muscle and multiple signaling pathways including insulin signaling and mTOR, PI3K-AKT, and cGMP-PKG signaling pathways were enriched in MCSEKO mice. The intraperitoneal glucose tolerance test and insulin tolerance test showed that glucose tolerance and insulin sensitivity were reduced in MCSEKO mice. Glucose transporter 4 (GLU4) and PKG-1 expression levels and insulin receptor substrate-1(IRS1)/PI3K/Akt signaling pathway were downregulated whilst the mTOR/S6K/S6 pathway was enhanced in MCSEKO mice. These effects were reversed by the H2S supplement. Aerobic treadmill training significantly promoted glucose tolerance and insulin sensitivity and improved GLU4 and PKG-1 levels, promoted IRS1/PI3K/Akt signaling and suppressed mTOR/S6K/S6 signaling pathway in MCSEKO mice. Our data suggest that skeletal muscle CSE/H2S signaling is critical for the maintenance of insulin sensitivity, which is associated with maintaining the balance in PKG, PI3K/Akt, and mTOR/S6K/S6 signaling pathways in skeletal muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.