Abstract

In this report, we present a photopromoted, metal-free transannulation of phenyl azides for the synthesis of DNA-encoded seven-membered rings. The transformation is efficiently achieved through a skeletal editing strategy targeting the benzene motif coupled with a Reversible Adsorption to Solid Support (RASS) strategy. A variety of valuable DNA-encoded seven-membered ring compounds, including DNA-encoded 3H-azepines, azepinones, and unnatural amino acids, are now accessible. Crucially, this DNA-compatible protocol can also be applied for the introduction of complex molecules, as exemplified by Lorcaserin and Betahistine. The selective conversion of readily available phenyl rings into high-value seven-membered rings offers a promising avenue for the construction of diversified and drug-like DNA-encoded library.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.