Abstract

Objective To examine the mechanism by which the Arg→Cys 519 mutation causes the clinical phenotype employing transgenic mice that express the mutated human COL2A1. Methods A DNA construct under the control of a COL2A1 specific promoter was prepared from genomic DNA isolated from fibroblasts from the proband with primary generalized osteoarthritis (OA) associated with a mild chondrodysplasia. Transgenic mice were obtained by injection of the constructs into pro-nuclei of fertilized eggs from the FVB/N inbred mouse strain. Transgenic mice harboring two alleles of the mutated human COL2A1 were examined for morphological abnormalities and for alterations of their skeletal development. Ultrastructural examination was performed to identify changes in the organization and density of collagen II fibrils in articular cartilage of the transgenic mice. Results Transgenic mice harboring two alleles of the mutated human collagen gene were smaller than their normal littermates, had a cleft palate, and disorganized growth plate. Electron microscopy of articular cartilage showed a decreased density of collagen II fibrils and revealed chondrocytes with dilated Golgi cysternae. Conclusions Expression of a COL2A1 with an Arg→Cys 519 substitution in transgenic mice causes retardation of skeletal development and ultrastructural alterations in articular cartilage with a profound reduction of the density of the collagen II fibrils in the tissue. These alterations may be responsible for the phenotype of precocious generalized OA and chondrodysplasia displayed by patients harboring this COL2A1 mutation. Copyright 2002 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.