Abstract

We show that the Kauffman bracket skein algebra of any oriented surface F F (possibly with marked points in its boundary) has no zero divisors and that its center is generated by knots parallel to the unmarked components of the boundary of F F . Furthermore, we show that skein algebras are Noetherian and Ore. Our proofs rely on certain filtrations of skein algebras induced by pants decompositions of surfaces. We prove some basic algebraic properties of the associated graded algebras along the way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.