Abstract

The spindle assembly checkpoint (SAC) controls the anaphase onset by preventing premature chromosome segregation until bipolar microtubule (MT) attachment and inter-kinetochore tension are fully established for every kinetochore pair. Once the SAC is off, activation of the Anaphase-Promoting Complex/Cyclosome, a ubiquitin ligase, leads to the degradation of securin and cyclin B, the activation of separase and the initiation of anaphase. We report here the identification and characterization of a G2-induced gene, SKAP, as a regulator for the anaphase onset. SKAP localizes to spindle MTs and kinetochores in mitosis. Depletion of SKAP does not activate the SAC, but substantially increases the duration of metaphase, delays the activation of separase, and decreases the fidelity of chromosome segregation. Our study identifies SKAP as a novel regulator of the metaphase-to-anaphase transition and demonstrates that mis-regulation of the separase activation results in a reduced fidelity of chromosome segregation and a reduced genomic stability independent of the SAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.