Abstract

Previous studies established an essential role for small conductance calcium-activated potassium (SK) channels in neuronal cell death pathways induced by glutamate excitotoxicity in cortical neurons in vitro and after cerebral ischemia in vivo. In addition to the intracellular calcium deregulation, glutamate-induced cell death also involves mechanisms of oxidative stress and mitochondrial dysfunction. Therefore, we sought to investigate whether SK channel activation might also affect mechanisms of intrinsic death pathways induced by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). Exposure of immortalized hippocampal HT-22 cells to H2O2 imposed activation of a cascade of intracellular toxic events resulting in intracellular ROS production, mitochondrial loss of function, and ultimately cell death. Using a pharmacological approach to activate SK channels with CyPPA, we demonstrated a reduction of H2O2-mediated intracellular ROS production and cell death. Interestingly, CyPPA mediated neuroprotection in conditions of extracellular calcium and/or pyruvate depletion, pointing to a neuroprotective role of mitochondrial SK channels. Moreover, CyPPA partially inhibited H2O2-induced mitochondrial superoxide production, but did not prevent mitochondrial membrane depolarization. CyPPA treatment resulted in slight ATP depletion and a reduction of mitochondrial respiration/oxygen consumption. These findings postulate that SK channels mediate a protective effect by preventing neuronal death from subsequent oxidative stress through an adaptive metabolic response at the level of mitochondria. Therefore, SK channel activation may serve as a therapeutic target, where mitochondrial dysfunction and related mechanisms of oxidative stress contribute to progressive degeneration and death of neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.