Abstract

A major ongoing research effort seeks to understand the behavior, ecology and control of the spotted lanternfly (SLF) (Lycorma delicatula), a highly invasive pest in the U.S. and South Korea. These insects undergo four nymphal stages (instars) before reaching adulthood, and appear to shift host plant preferences, feeding, dispersal and survival patterns, anti-predator behaviors, and response to traps and chemical controls with each stage. However, categorizing SLF life stage is challenging for the first three instars, which have the same coloration and shape. Here we present a dataset of body mass and length for SLF nymphs throughout two growing seasons and compare our results with previously-published ranges of instar body lengths. An analysis using two clustering methods revealed that 1st-3rd instar body mass and length fell into distinct clusters consistently between years, supporting using these metrics to stage nymphs during a single growing season. The length ranges for 2nd-4th instars agreed between years in our study, but differed from those reported by earlier studies for diverse locations, indicating that it is important to obtain these metrics relevant to a study's region for most accurate staging. We also used these data to explore the scaling of SLF instar bodies during growth. SLF nymph body mass scaled with body length varied between isometry (constant shape) and growing somewhat faster than predicted by isometry in the two years studied. Using previously published data, we also found that SLF nymph adhesive footpad area varies in direct proportion to weight, suggesting that footpad adhesion is independent of nymphal stage, while their tarsal claws display positive allometry and hence disproportionately increasing grasp (mechanical adhesion). By contrast, mouthpart dimensions are weakly correlated with body length, consistent with predictions that these features should reflect preferred host plant characteristics rather than body size. We recommend future studies use the body mass vs length growth curve as a fitness benchmark to study how SLF instar development depends on factors such as hatch date, host plant, temperature, and geographic location, to further understanding of life history patterns that help prevent further spread of this invasive insect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call