Abstract

Penetration of renewable energy resources (RERs) in the power grid continues to increase as we strive toward a greener environment for the future. While they have many advantages, most RERs possess little or no rotational kinetic energy, thereby threatening the frequency stability of future power grids. Energy storage systems (ESSs) can be used to mitigate this problem, as they are capable of providing virtual inertia to the system. This paper proposes a novel analytical approach for sizing ESSs to provide inertial support to the grid and maintain frequency stability in presence of RERs. This method analytically estimates the total inertia of the system using probability distributions of the outage states of conventional generators and RERs. RERs are modeled as multi-state units, considering the variability of their output power due to changes in weather conditions and also the forced outages of their equipment. The ESS is utilized to provide virtual inertia to the grid in the form of active power once the estimated system inertia falls below the minimum required during a disturbance. The efficacy of the proposed approach is tested on the IEEE 39 bus system and the results obtained by the analytical approach are validated using Monte Carlo simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.