Abstract

Static light scattering is widely used for sizing of particles with radii in the range of 50 nm up to several micrometers. These experiments usually require very low particle concentrations (<10(-4)) for prevention of multiple scattering. As a consequence, nonabsorbing samples that are suited for light-scattering investigations must be transparent so that the transmittance of the incident light is typically above 95%. Investigations of less translucent samples require corrective terms for the beginning of multiple scattering to retrieve the particle-size distribution successfully. We applied a computationally convenient first-order approximation for the multiple-scattering problem that has Hartel's approach in its first steps. When incorporated into our inversion technique, this approximation functions well for samples with transmittances above 30%. We present examples of applications to experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.