Abstract
Many toxins and antimicrobial peptides permeabilize membrane vesicles by forming multimeric pores. Determination of the size of such pores is an important first step for understanding their structure and the mechanism of their self-assembly. We report a simple method for sizing pores in vesicles based on the differential release of co-encapsulated fluorescently labeled dextran markers of two different sizes. The method was tested using the bee venom peptide melittin, which was found to form pores of 25-30 A diameter in palmitoyloleoylphosphatidylcholine (POPC) vesicles at a lipid-to-peptide ratio of 50. This result is consistent with observations on melittin pore formation in erythrocytes (Katsu, T., C. Ninomiya, M. Kuroko, H. Kobayashi, T. Hirota, and Y. Fujita 1988. Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane Biochim. Biophys. Acta. 939:57-63).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.