Abstract

A continuum design sensitivity analysis method of dynamic frequency response of structural systems is developed using the adjoint variable and direct differentiation methods. A variational approach with a non-selfadjoint operator for complex variable is used to retain the continuum elasticity formulation throughout derivation of design sensitivity results. Sizing design variables such as thickness and cross-sectional area of structural components are considered for the design sensitivity analysis. A numerical implementation method of continuum design sensitivity analysis results is developed using postprocessing analysis data of COSMIC/NASTRAN finite element code to get the design sensitivity information of displacement and stress performance measures of the structures. The numerical method is tested using basic structural component such as a plate supported by shock absorbers and a vehicle chassis frame structure for sizing design variables. Accurate design sensitivity results are obtained even in the vicinity of resonance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call