Abstract

This paper presents a genetic programming approach for simultaneous optimization of sizing and topology of truss structures. It aims to find the optimal cross-sectional areas and connectivities of the joints to achieve minimum weight in the search space. The structural optimization problem is subjected to kinematic stability, maximum allowable stress and deflection. This approach uses the variable-length representation of potential solutions in the shape of computer programs and evolves to the optimum solution. This method has the capability to identify redundant truss elements and joints in the design space. The obtained results are compared with existing popular and competent techniques in literature and its competence as a tool in the optimization problem are demonstrated in solving some benchmark examples, the proposed approach provided lighter truss structures than the available solutions reported in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call