Abstract

Abstract Sun energy is widely utilized to power stand-alone photovoltaic systems (SAPV). However, the lack of long term hourly meteorological data and inaccurate methods result in obstacles in designing the SAPV system. Therefore, an optimal sizing methodology is necessary to guarantee satisfactory performance. In this study, a new mutation adaptive differential evolution (MADE) based on a multi-objective optimization algorithm is presented to optimize the configuration of the off-grid SAPV system. Three conflict objectives are normalized, weighted, and then aggregated by mono-objective function to optimally size the off-grid stand-alone PV system. The performance of the proposed SAPV system is analyzed based on three types of batteries which are lead-acid, AGM, and lithium-ion. The results show that the optimal configuration based on lead-acid has less fitness function ( f ), life cycle cost (LCC), levelized cost of energy (LCE), with a high level of loss of load probability (LLP), and their values are 0.0268, 54,896 USD, 1.58USD, and 0.19%, respectively. Moreover, the optimal numbers of the PV modules (in series and parallel) and lead-acid battery are 9, 28, and 42, respectively. Therefore, the SAPV system based on lead-acid battery can be very suitable for real-world applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.