Abstract

In aquatic ecosystems, where organisms typically feed and grow by eating smaller individuals, a characteristic size spectrum emerges, such that large organisms are much more rare than small ones. Here, a stochastic individual-based model for the dynamics of size spectra is described, based on birth, growth, and death of individuals, using simple assumptions about feeding behavior. It is shown that the deterministic limit derived from the stochastic process is a partial differential equation previously used to describe the dynamics of size spectra. The equation has two classes of dynamics in the long term. The first is a steady state. A derivation under simple mass-balance assumptions shows that, at steady state, the linear size spectrum relating log abundance to log mass has a slope of approximately -1, similar to that often observed in natural size spectra. The second class of dynamics, not previously described, is a traveling-wave solution in which waves move along the size spectrum from small to large body size. Traveling waves become more likely when predators prefer prey much smaller than themselves and when they are specialized in the range of prey body sizes consumed. Wavelength depends on the size of prey relative to the size of predator, and wave speed depends on how fast mass moves through the spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.