Abstract

The size-specific influence of the M+ alkali ion (M = Li, Na, K, Rb, and Cs) in the solvation process of the M+-benzene clusters by Ar atoms is investigated by means of molecular dynamic simulations. To fully understand the behavior observed in M+-bz-Ar(n) clusters, solvation is also studied in clusters containing either M+ or benzene only. The potential energy surfaces employed are based on a semiempirical bond-atom decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions, studying the evolution of the distances between the Ar atoms and the alkali ion M+ or the benzene molecule for all M+-bz-Ar(n) clusters. For all members, in the M+-bz series, the benzene molecule (bz) is found to remain strongly bound to M+ even in the presence of solvent atoms. The radial distribution functions for the heavier clusters (K+-bz, Rb+-bz, and Cs+-bz), are found to be different than for the lighter (Na+-bz and Li+-bz) ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.