Abstract

Superparamagnetic iron oxide nanoparticles (SPION) are extensively used for magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), as well as for magnetic fluid hyperthermia (MFH). We here describe a sequential centrifugation protocol to obtain SPION with well-defined sizes from a polydisperse SPION starting formulation, synthesized using the routinely employed co-precipitation technique. Transmission electron microscopy, dynamic light scattering and nanoparticle tracking analyses show that the SPION fractions obtained upon size-isolation are well-defined and almost monodisperse. MRI, MPI and MFH analyses demonstrate improved imaging and hyperthermia performance for size-isolated SPION as compared to the polydisperse starting mixture, as well as to commercial and clinically used iron oxide nanoparticle formulations, such as Resovist® and Sinerem®. The size-isolation protocol presented here may help to identify SPION with optimal properties for diagnostic, therapeutic and theranostic applications.

Highlights

  • Superparamagnetic iron oxide nanoparticles (SPION) are widely used for biomedical applications, including magnetic resonance imaging (MRI), magnetic particle imaging (MPI), magnetic fluid hyperthermia (MFH), separation of biomolecules, and targeted drug and gene delivery [1,2,3]

  • SPION preparation and size‐isolation Prototypic citrate-coated SPION were prepared via the standard co-precipitation technique, under nitrogen atmosphere [5, 6]

  • We here present a centrifugation protocol to obtain SPION with well-defined sizes and with a very narrow size distribution (PDI below 0.1) from a polydisperse starting mixture prepared via the co-precipitation technique

Read more

Summary

Introduction

Superparamagnetic iron oxide nanoparticles (SPION) are widely used for biomedical applications, including magnetic resonance imaging (MRI), magnetic particle imaging (MPI), magnetic fluid hyperthermia (MFH), separation of biomolecules, and targeted drug and gene delivery [1,2,3]. As a result of their refined size distribution, the obtained optimized SPION dispersions showed substantially improved performance in MRI, MPI and MFH compared to the crude starting formulation, as well as to commercial SPION products, such as Resovist® and Sinerem®.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.