Abstract
Classical nucleation theory is notoriously inaccurate when using the macroscopic surface free energy for a planar interface. We examine the size dependence of the surface free energy for TIP4P/2005 water nanodroplets (radii ranging from 0.7 to 1.6 nm) at 300 K with the mitosis method, that is, by reversibly splitting the droplets into two subclusters. We calculate the Tolman length to be -0.56 ± 0.09 Å, which indicates that the surface free energy of water droplets that we investigated is 5-11 mJ/m(2) greater than the planar surface free energy. We incorporate the computed Tolman length into a modified classical nucleation theory (δ-CNT) and obtain modified expressions for the critical nucleus size and barrier height. δ-CNT leads to excellent agreement with independently measured nucleation kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.