Abstract

ObjectiveThe aim of this study is to explain the influence of peripheral interface stress singularities on the testing of tensile bond strength. The relationships between these theoretically predicted singularities and the effect of specimen size on the measured bond strength are evaluated. MethodsFinite element method (FEM) and boundary element method (BEM) analyses of microtensile bond strength test specimens were performed and the presence of localized high stress concentrations and singularities was analyzed. The specimen size effect predicted by the models was compared to previously published experimental data. ResultsFEM analysis of single-material trimmed hour-glass versus cast cylindrical specimens showed different theoretical stress distributions, with the dumbbell or cylindrical specimens showing a more homogeneous distribution of the stress on the critical symmetry plane. For multi-material specimens, mathematical singularities at the free edge of the bonded interface posed a computational challenge that resulted in mesh-dependence in the standard FEM analysis. A specialized weighted-traction BEM analysis, designed to eliminate mesh-dependence by capturing the effect of the singularity, predicted a specimen size effect that corresponds to that published previously in the literature. SignificanceThe results presented here further support the attention to specimen dimensions that has already broadened the empirical use of the microtensile test methods. FEM and BEM analyses that identify stress concentrations and especially marginal stress singularities must be accounted for in reliable bonding strength assessments. Size-dependent strength variations generally attributed to the effects of flaw distributions throughout the interfacial region are not as relevant as the presence of singularities at bonded joint boundaries – as revealed by both FEM and BEM analyses, when interpreted from a generalized fracture mechanics perspective. Furthermore, this size-dependence must be considered when evaluating or designing dental adhesive systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.