Abstract

Bumblebees and other key pollinators are experiencing global declines, a phenomenon driven by multiple environmental stressors, including pesticide exposure. While bumblebee queens spend most of their life hibernating underground, no study to date has examined how exposure to pesticide-contaminated soils might affect bumblebee queens during this solitary phase of their lifecycle. We exposed Bombus impatiens queens (n = 303) to soil treated with field-realistic concentrations of two diamide insecticides (chlorantraniliprole and cyantraniliprole) and two fungicides (boscalid and difenoconazole), alone or combined, during a 30-week hibernation period. We found that exposure to boscalid residues in soil doubled the likelihood of queens surviving through the colony initiation period (after successful hibernation) and laying eggs. Our data also revealed complex interactions between pesticide exposure and queen body mass on aspects of colony founding. Among others, exposure to cyantraniliprole led to lethal and sublethal post-hibernation effects that were dependent on queen size, with larger queens showing higher mortality rates, delayed emergence of their first brood, and producing smaller workers. Our results show that effects of pesticide exposure depend on intrinsic traits of bumblebee queen physiology and challenge our understanding of how bees respond to pesticides under environmentally realistic exposure scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.