Abstract

This paper deals with the size-dependent geometrically nonlinear free vibration of magneto-electro-thermo elastic (METE) nanoplates using the nonlocal elasticity theory. The mathematical formulation is developed based on the first-order shear deformation plate theory, von Kármán-type of kinematic nonlinearity and nonlocal elasticity theory. The influences of geometric nonlinearity, rotary inertia, transverse shear deformation, magneto-electro-thermal loading and nonlocal parameter are considered. First, the generalized differential quadrature (GDQ) method is utilized to reduce the nonlinear partial differential equations to a system of time-dependent nonlinear ordinary differential equations. Afterwards, the numerical Galerkin method, periodic time differential operators and pseudo-arc length continuation algorithm are employed to compute the nonlinear frequency versus the amplitude for the METE nanoplates. The presented methodology enables one to describe the large-amplitude vibration characteristics of METE nanoplates with various sets of boundary conditions. A detailed parametric study is carried out to analyze the important parameters such as the nondimensional nonlocal parameter, external electric potential, external magnetic potential, temperature change, length-to-thickness ratio, aspect ratio and various edge conditions on the nonlinear free vibration characteristics of METE nanoplates. The results demonstrate that considering the size effect on the vibration response of METE nanoplate results in decreasing the natural frequency, a remarkable increasing effect on the hardening behavior and subsequently increasing the nonlinear-to-linear frequency ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.