Abstract
Considering the diffusion reaction at solid interfaces, the ignition temperature of compounds fabricated by self-propagating high-temperature synthesis (SHS) is modelled with the help of size-dependent activation energy. As reactant size decreases, ignition temperature also decreases. This is because of increased contact areas between the reactants and the lowered diffusion barrier, both of which must be calculated specifically for reactants in nanoscale. The model predictions and experimental results are consistent for some metallic compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.