Abstract
Size effect has been regularly utilized to tune the catalytic activity and selectivity of metal nanoparticles (NPs). Yet, there is a lack of understanding of the size effect in the electrocatalytic reduction of CO2, an important reaction that couples with intermittent renewable energy storage and carbon cycle utilization. We report here a prominent size-dependent activity/selectivity in the electrocatalytic reduction of CO2 over differently sized Pd NPs, ranging from 2.4 to 10.3 nm. The Faradaic efficiency for CO production varies from 5.8% at -0.89 V (vs reversible hydrogen electrode) over 10.3 nm NPs to 91.2% over 3.7 nm NPs, along with an 18.4-fold increase in current density. Based on the Gibbs free energy diagrams from density functional theory calculations, the adsorption of CO2 and the formation of key reaction intermediate COOH* are much easier on edge and corner sites than on terrace sites of Pd NPs. In contrast, the formation of H* for competitive hydrogen evolution reaction is similar on all three sites. A volcano-like curve of the turnover frequency for CO production within the size range suggests that CO2 adsorption, COOH* formation, and CO* removal during CO2 reduction can be tuned by varying the size of Pd NPs due to the changing ratio of corner, edge, and terrace sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.