Abstract

Intra-articular drug delivery can be effective in targeting a diseased joint butis hampered by rapid clearance times from the diarthrodial joint. The synovium is a multi-layered tissue that surrounds the diarthrodial joint and governs molecular transport into and out of the joint. No models of drug clearance through synovium exist to quantify diffusivity across solutes, tissue type and disease pathology. We previously have developed a finite element model of synovium as a porous, permeable, fluid-filled tissue and used an inverse method to determine urea's effective diffusivity (Deff) in de-vitalized synovium explants.22 Here we apply this method to determineDefffrom unsteady diffusive transport of model solutes and confirm the role of molecular weight in solute transport. As molecular weight increased, Deff decreased in both human and porcine tissues, with similar behavior across the two species. Unsteady transport was well-described by a single exponential transient decay in concentration, yielding solute half-lives (t1/2) that compared favorably with theDeff determined from the finite element model fit. Determined values forDeffparallel prior observations of size-dependentin vivodrug clearance and provide an intrinsic parameter with greater ability to resolve size-dependencein vitro. Thus, this work forms the basis for understanding the influence of size on drug transport in synovium and can guide future studies to elucidate the role of charge and tissue pathology on the transport of therapeutics in healthy and pathological human synovium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call