Abstract

A detailed investigation examines how the size of allylbenzene-capped silicon nanocrystals (ncSi:AB) affects their chemical reactivity with gaseous O2, H2O, and O2/H2O as probed by in situ luminescence spectroscopy. Specifically, changes in the photoluminescence (PL) of size-separated ncSi:AB are monitored through alterations of their PL absolute quantum yield (AQY) as well as the wavelength and intensity of their PL spectra over time. These experiments, conducted under both continuous and intermittent illumination, help elucidate the roles of O2, H2O, and mixtures of O2/H2O, with respect to oxidation of ncSi:AB as a function of their size, providing vital information for any perceived application in advanced materials and biomedical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.