Abstract

Size-controlled gold nanoparticles, ranging from 2 to 15 nm in diameter, were first prepared from gold substrates in 0.1 N HCl aqueous solutions without the addition of any stabilizers by sonoelectrochemical methods. First, an Au substrate was cycled in a deoxygenated aqueous solution containing 0.1 N HCl from −0.28 to +1.22 V vs Ag/AgCl at 500 mV/s with 100 scans. The durations at the cathodic and anodic vertexes are 10 and 5 s, respectively. After this process, Au- and Cl-containing complexes were left in the solution. The Au working electrode was then immediately replaced by a Pt electrode, and cathodic overpotentials of 0.2, 0.4, and 0.6 V from the open circuit potential (OCP) of ca. 0.82 V vs Ag/AgCl were applied under sonification to synthesize Au nanoparticles. The prepared nanoparticles increase in size from 2 to 15 nm with the increase of the cathodic overpotential applied from 0.2 to 0.6 V. Furthermore, the ratio of Au nanoparticles to Au-containing nanocomplexes in solutions can be controlled by adjusting the sonoelectrochemical reduction time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.