Abstract

Graphene nanodots (GNDs) are one of the most attractive graphene nanostructures due to their tunable optoelectronic properties. Fabricated by polystyrene‐nanosphere lithography, uniformly sized graphene nanodots array (GNDA) is constructed as an ultraviolet photodetector (PD) with ZnO nanofilm spin coated on it. The size of GNDA can be well controlled from 45 to 20 nm varying the etching time. It is revealed in the study that the photoelectric properties of ZnO/GNDA PD are highly GNDA size‐dependent. The highest responsivity (R) and external quantum efficiency of ZnO/GNDA (20 nm) PD are 22.55 mA W−1 and 9.32%, almost twofold of that of ZnO PD. Both ZnO/GNDA (20 nm) PD and ZnO/GNDA (30 nm) PD exhibit much faster response speed under on/off switching light and have shorter rise/decay time compared with ZnO PD. However, as the size of GNDA increase to 45 nm, the PD appears poor performance. The size‐dependent phenomenon can be explained by the energy band alignments in ZnO/GNDA hybrids. These efforts reveal the enhancement of GNDs on traditional photodetectors with tunable optoelectronic properties and hold great potential to pave a new way to explore the various remarkable photodetection performances by controlling the size of the nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.