Abstract
In [13], a new size-change principle was proposed to verify termination of functional programs automatically. We extend this principle in order to prove termination and innermost termination of arbitrary term rewrite systems (TRSs). Moreover, we compare this approach with existing techniques for termination analysis of TRSs (such as recursive path orderings or dependency pairs). It turns out that the size-change principle on its own fails for many examples that can be handled by standard techniques for rewriting, but there are also TRSs where it succeeds whereas existing rewriting techniques fail. In order to benefit from their respective advantages, we show how to combine the size-change principle with classical orderings and with dependency pairs. In this way, we obtain a new approach for automated termination proofs of TRSs which is more powerful than previous approaches.KeywordsNormal FormOutput NodeDependency GraphInput NodeTermination ProofThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.