Abstract

The syntheses of colloidal silicon nanocrystals (Si-NCs) with dimensions in the 3-4 nm size regime as well as effective methodologies for their functionalization with alkyl, amine, phosphine, and acetal functional groups are reported. Through rational variation in the surface moieties we demonstrate that the photoluminescence of Si-NCs can be effectively tuned across the entire visible spectral region without changing particle size. The surface-state dependent emission exhibited short-lived excited-states and higher relative photoluminescence quantum yields compared to Si-NCs of equivalent size exhibiting emission originating from the band gap transition. The Si-NCs were exhaustively characterized using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transformed infrared spectroscopy (FTIR), and their optical properties were thoroughly investigated using fluorescence spectroscopy, excited-state lifetime measurements, photobleaching experiments, and solvatochromism studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.