Abstract

In this paper, we present a distributional word embedding model trained on one of the largest available Russian corpora: Araneum Russicum Maximum (over 10 billion words crawled from the web). We compare this model to the model trained on the Russian National Corpus (RNC). The two corpora are much different in their size and compilation procedures. We test these differences by evaluating the trained models against the Russian part of the Multilingual SimLex999 semantic similarity dataset. We detect and describe numerous issues in this dataset and publish a new corrected version. Aside from the already known fact that the RNC is generally a better training corpus than web corpora, we enumerate and explain fine differences in how the models process semantic similarity task, what parts of the evaluation set are difficult for particular models and why. Additionally, the learning curves for both models are described, showing that the RNC is generally more robust as training material for this task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.