Abstract

Morphology engineering is a decisive factor for the optoelectronic properties of nanocrystals. Differing from morphologies with a solid interior, ring-like structures have a unique internal space which is not only available for loading chemicals, but also useful for controlling the field distribution. Herein, the perovskite array family welcomes a new member - CsPbBr3 ring arrays. This work solves several fundamental problems for fabricating CsPbBr3 ring arrays: (i) developing a simple method using 2D colloidal crystal templates to achieve ring arrays of CsPbBr3, (ii) finding two ways, say changing the template size or annealing of the template, to accurately tune the ring size of the array in a wide range from 2.6 μm to 16.9 μm, and (iii) investigating the dynamics of perovskite rings, which indicates a shrinking process towards the template spheres before the crystallization of the perovskites. Finally, the application of CsPbBr3 perovskite ring arrays to the field of lasers is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.