Abstract

Gas-phase ion-trap reactivity experiments and density functional simulations reveal that water oxidation to H2O2 mediated by (calcium) manganese oxide clusters proceeds via formation of a terminal oxyl radical followed by oxyl/hydroxy O-O coupling. This mechanism is predicted to be energetically feasible for Mn2Oy+ (y = 2-4) and the binary CaMn3O4+, in agreement with the experimental observations. In contrast, the reaction does not proceed for the tetramanganese oxides Mn4Oy+ (y = 4-6) under these experimental conditions. This is attributed to the high fluxionality of the tetramanganese clusters, resulting in the instability of the terminal oxyl radical as well as an energetically unfavorable change of the spin state required for H2O2 formation. Ca doping, yielding a symmetry-broken lower-symmetry three-dimensional (3D) CaMn3O4+ cluster, results in structural stabilization of the oxyl radical configuration, accompanied by a favorable coupling between potential energy surfaces with different spin states, thus enabling the cluster-mediated water oxidation reaction and H2O2 formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call