Abstract

Membranes are compelling devices for many industrial separation processes, which are all subject to the intrinsic permeability-selectivity tradeoff. A general strategy to enhance separation performance is to reduce the pore size distribution and, ideally, make the membrane isoporous. In this study, we focus on a minimal model for regularly porous membranes, which consists of hard spheres moving through cylindrical pores. The collision dynamics is solved exactly and implemented in nonequilibrium event-driven molecular dynamics simulations. For such size-sieving porous membranes, we show that the permeability P of hard spheres of size σ through cylindrical pores of size d follows the hindered diffusion mechanism due to size exclusion as P ∝ (1 - σ/d)2. According to this law, the separation of binary mixtures of large and small particles exhibits a linear relationship between α-1/2 and P-1/2, where α and P are the selectivity and permeability of the smaller particle, respectively. The mean permeability through polydisperse pores is the average of the permeabilities of individual pores, weighted by the fraction of the single pore area over the total pore area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call