Abstract

AbstractFluorocarbon gases are regarded as one of the largest contributors to serious environmental problems such as ozone‐depletion and global warming, and thus, the development of reclamation technologies is in great demand for reducing emission of such harmful compounds. So far, porous materials such as zeolites, activated carbons, and metal‐organic frameworks (MOFs) have been examined as solid‐state absorbents for fluorocarbon gases. However, such porous materials often suffer from a lack of size‐selectivity in fluorocarbon gas uptakes due to the large‐sized cavities (>1 nm). Herein, it is reported that macrocyclic pillar[n]quinones (P[n]Q, n = 5 or 6) in crystalline state show size‐selective uptake for fluorocarbon gases owing to their molecular‐scale cavities (<1 nm). The P[n]Q also show uptake behaviors for volatile halogenated organic compounds (VHOCs), which are highly toxic. Interestingly, the volatilities of VHOCs within the 1D channels of P[5]Q are drastically reduced compared with those of the bulk VHOC solvents. Experimental results and computational analyses revealed that the excellent storage abilities of the crystalline P[n]Q are a synergic result of their electron‐deficient macrocyclic scaffolds and the basic carbonyl oxygen atoms on their rims.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call