Abstract

In this study, the water-solubility and sources of metals and trace elements in both fine and coarse particulate matter (PM) were investigated in Central Los Angeles. Sampling was performed in the winter, spring, and summer of 2022 at the Particle Instrumentation Unit (PIU) of the University of Southern California located in the proximity of I-110 freeway. Both fine and coarse PM samples were collected using Personal Cascade Impactors (PCIS) and chemically analyzed to determine their water-soluble and water-insoluble metal content. Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) were used to determine the sources of soluble and insoluble metals and obtain their contributions to total metal concentration. Our results indicate that the water-solubility of most of the metals is higher in the fine size fraction compared to the coarse fraction. Seasonal variations in the water solubility of selected metals for both coarse and fine fractions were observed, with higher water-soluble metal concentrations in summer for several species (e.g., Fe, S, Pb, Cu, La, Ni, and Al), possibly due to higher photochemical processing, while in winter, almost all species exhibited higher insoluble fraction concentrations. The PCA and MLR analyses results showed that tire and brake wear was the most significant contributor to the total metals for both fine soluble and insoluble portions, accounting for 35% and 75% of the total metals, respectively. Combustion sources also contributed substantially to water-soluble metals for fine and coarse size ranges, representing 40% and 32% of the total metal mass, respectively. In addition, mineral dust and soil and re-suspended dust were identified as the highest contributors to coarse metals. The MLR analysis also revealed that secondary aerosols contributed 11% to the fine water-soluble metals. Our results suggest that non-tailpipe emissions significantly contribute to both coarse and fine PM metals in the Central Los Angeles region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call