Abstract

In this work, we investigated the use of optoelectronic tweezers (OET) to manipulate objects that are larger than those commonly positioned with standard optical tweezers. We studied the forces that could be produced on differently sized polystyrene microbeads and MCF-7 breast cancer cells with light-induced dielectrophoresis (DEP). It was found that the DEP force imposed on the bead/cell did not increase linearly with the volume of the bead/cell, primarily because of the non-uniform distribution of the electric field above the OET bottom plate. Although this size-scaling work focuses on microparticles and cells, we propose that the physical mechanism elucidated in this research will be insightful for other micro-objects, biological samples, and micro-actuators undergoing OET manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.