Abstract

We used a multistage PIXE inertial impactor with nine different aerodynamic diameter ranges (between 16 and 0.06 μm) to sample indoor particulate matter (PM). X‐ray fluorescence (XRF) measurements performed at cutoff diameters (CoDs) of 0.25, 0.5, 1, 2, 4, and 8 μm were used to identify elements in various size fractions. Anthropogenic sources were the dominant sources for fine and ultrafine particle sizes. The XRF results show that natural sources also contribute to the fine and ultrafine fractions of pollutants. Scanning electron microscopy and energy‐dispersive system analysis were performed on membranes having PM CoDs of 4, 2, 1, 0.5, and 0.25 μm. Elemental mappings show the membranes with PM of CoDs 0.25 and 0.5 μm having S as a dominant element, confirming the results obtained with XRF. Strong correlation among maps of S, N, and O show that ammonium sulfate is the major constituent at these size fractions. Other elements such as Si, Ca, Fe, Al, and Mg show up in smaller amounts at these size fractions but increase for membranes with larger particles. For size fractions larger than 0.5 μm, there is a good correlation between the elemental maps of these elements and oxygen, indicating that these elements exist mostly in oxide forms. The absence of clear N signals and the correlation between the Ca and S maps indicate that S in these size fractions is not due to ammonium sulfate. The presence of Mg, K, Cl, and Na at these CoDs shows that these elements are due to salts originating from sea breeze.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.