Abstract
To estimate the size of the drops formed on individual bubbles of the reducing gas during the oxide melt barbotage, a metal phase formation model was used. This model includes the following stages: formation of bubbles upon injection of gas into the melt; metal recovery on the bubbles surface and its concentration in the form of drops in stern. Equations are presented that make it possible to estimate the limiting sizes of a gas bubble (Rкрп) and drops (rкрк) moving in oxide melt without crushing. Using the densities (p, kg/m3) and surface tension (σ, mJ/m2) of B2O3 - CaO (1) and B2O3 - CaO - CuO (2) melts in the temperature range of 1373 - 1673 K, described by the equations σ1= 87,0 + 0,242T, p1 = 3,2610-3 - 0,91T, σ2= 10,8 + 0,178T, p2 = 3,1910-3 - 0, 70T, respectively , the critical dimensions of a gas bubble (Rкрп)moving in an oxide melt without crushing were calculated. In B2O3 - CaO - CuO melt, critical radius of the bubble varies from 0.047 to 0.053 m depending on temperature, and for the B2O3 - CaO system these values are 0.06 - 0.081 m. Using a technique with thermodynamic equilibrium calculations that allows to describe the features of oxide melt barbotage by various reducing gases, we determined the change of the copper oxides content in B2O3 - CaO - CuO melt depending on the amount of CO introduced at different temperatures. Based on the obtained data, the amount of copper formed during the interaction of Cu2O in the melt with a single CO bubble wascalculated depending on the content of copper oxide and the amount of CO in the bubble. The correlation dependences of the drop size on the content of Cu2O in the melt (CCu O, %), temperature (T, K) and the amount of CO in the bubble (nCO , mol) were obtained by statistical data processing methods.
Highlights
To estimate the size of the drops formed on individual bubbles of the reducing gas during the oxide melt barbotage, a metal phase formation model was used
Using a technique with thermodynamic equilibrium calculations that allows to describe the features of oxide melt barbotage by various reducing gases, we determined the change of the copper oxides content in B2O3 – CaO – CuО melt depending on the amount of CO introduced at different temperatures
Mоделирование процесса газового восстановления металлов из многокомпонентного оксидного расплава в барботируемом слое // Бутлеровские сообщения
Summary
РАЗМЕР КАПЕЛЬ МЕТАЛЛА, ОБРАЗОВАННЫХ НА ПУЗЫРЕ ГАЗА-ВОССТАНОВИТЕЛЯ ПРИ БАРБОТАЖЕ ОКСИДНОГО РАСПЛАВА*. Используя определенные методом лежащей капли плотность (ρ, кг/м3) и поверхностное натяжение (σ, мДж/м2) расплавов B2O3 – CaO и B2O3 – CaO – CuО в интервале температур 1373 – 1673 К, описываемые уравнениями σ1 = 87,0 + 0,242T, ρ1 = 3,26·103 – 0,91T, σ2 = 10,8 + 0,178T, ρ2 = 3,19·103 – 0,70T соответственно, рассчитаны критические размеры газового пузыря , движущегося в оксидном расплаве без дроб ления. – образование пузырей при вдувании газа в расплав; – восстановление металла на границе раздела газ – расплав; – формирование капель металла; – движение системы «газовый пузырь – капля металла» в направлении, определяемом соотношением действующих гравитационных сил; – перенос металлических капель на поверхность, их коаллесценцию и оседание после достижения размеров, обеспечивающих превышение силы тяжести над суммой сил гидростатического выталкивания и поверхностного натяжения. В расплаве B2O3 – CaO – CuО критичес кий радиус пузыря в зависимости от температуры меняется от 0,047 до 0,053 м, в то время как для системы
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.