Abstract

Near-infrared-II fluorescence imaging (NIR-II FI) has become a powerful imaging technique for disease diagnosis owing to its superiorities, including high sensitivity, high spatial resolution, deep imaging depth, and low background interference. Despite the widespread application of conjugated polymer nanoparticles (CPNs) for NIR-II FI, most of the developed CPNs have quite low NIR-II fluorescence quantum yields based on the energy gap law, which makes high-sensitivity and high-resolution imaging toward deep lesions still a huge challenge. This work proposes a nanoengineering strategy to modulate the size of CPNs aimed at optimizing their NIR-II fluorescence performance for improved NIR-II phototheranostics. By adjusting the initial concentration of the synthesized conjugated polymer, a series of CPNs with different particle sizes are successfully prepared via a nanoprecipitation approach. Results show that the NIR-II fluorescence brightness of CPNs gradually amplifies with decreasing particle size, and the optimal CPNs, NP0.2, demonstrate up to a 2.05-fold fluorescence enhancement compared with the counterpart nanoparticles. With the merits of reliable biocompatibility, high photostability, and efficient light-heat conversion, the optimal NP0.2 has been successfully employed for NIR-II FI-guided photothermal therapy both in vitro and in vivo. Our work highlights an effective strategy of nanoengineering to improve the NIR-II performance of CPNs, advancing the development of NIR-II FI in life sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.