Abstract
Several, partly new, ionic liquids (ILs) containing imidazolium and ammonium cations as well as the medium-sized [NTf2 ](-) (0.230 nm(3) ; Tf=CF3 SO3 (-) ) and the large [Al(hfip)4 ](-) (0.581 nm(3) ; hfip=OC(H)(CF3 )2 ) anions were synthesized and characterized. Their temperature-dependent viscosities and conductivities between 25 and 80 °C showed typical Vogel-Fulcher-Tammann (VFT) behavior. Ion-specific self-diffusion constants were measured at room temperature by pulsed-gradient stimulated-echo (PGSTE) NMR experiments. In general, self-diffusion constants of both cations and anions in [Al(hfip)4 ](-) -based ILs were higher than in [NTf2 ](-) -based ILs. Ionicities were calculated from self-diffusion constants and measured bulk conductivities, and showed that [Al(hfip)4 ](-) -based ILs yield higher ionicities than their [NTf2 ](-) analogues, the former of which reach values of virtually 100 % in some cases.From these observations it was concluded that [Al(hfip)4 ](-) -based ILs come close to systems without any interactions, and this hypothesis is underlined with a Hirshfeld analysis. Additionally, a robust, modified Marcus theory quantitatively accounted for the differences between the two anions and yielded a minimum of the activation energy for ion movement at an anion diameter of slightly greater than 1 nm, which fits almost perfectly the size of [Al(hfip)4 ](-) . Shallow Coulomb potential wells are responsible for the high mobility of ILs with such anions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.