Abstract
Bis(acetylido) aurates(I) and thallium(I) trifluoromethylsulfonates were used to synthesize AuI -TlI metallopolymers, displaying novel and unusual structural motifs of the metal-metal backbones in the solid state: a discrete molecular cluster, 1D chains of interconnected dimers, tetramers, or dodecamers of Au-Tl units, and a 2D-plane network, consisting of alternating edge-linked (AuTl)6 and (AuTl)4 cycles. The formation of the different architectures was primarily controlled by the steric demand of the acetylide-substituent groups. Thus, the bulkiest 2,6-diisopropylphenyl derivative yielded a molecular cluster [Tl2 Au3 ]. Most compounds showed bright visible photoluminescence with quantum yields of up to 25 % at ambient temperature. The color of the emitted light significantly differs with the network structure. Furthermore, theoretical studies of singlet excitations in the molecular cluster, as well as NMR and mass-spectrometric investigations of the fragmentation of the metallopolymers in solution are described in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.