Abstract
The aim of this study was to evaluate the effect of PLGA microsphere dimensions on bone formation after injection of calcium phosphate cement (CPC)/PLGA in a guinea pig tibial intramedullarly model. To this end, injectable CPC/PLGA formulations were prepared using PLGA microspheres with either a small (~25 µm) or large (~100 µm) diameter, which were incorporated at a 20:80 ratio (wt%) within apatite CPC. Both CPC/PLGA formulations were injected into a marrow-ablated tibial intramedullary cavity and, after an implantation period of 12 weeks, histology and histomorphometry were used to address bone formation. The results demonstrated bone ingrowth throughout the entire scaffold material for both CPC/PLGA formulations upon PLGA microsphere degradation. More importantly, bone formation within the CPC matrix was > two-fold higher for CPC-PLGA with 25 µm PLGA microspheres. Additionally, the pattern of bone and marrow formation showed distinct differences related to PLGA microsphere dimension. In general, this study demonstrates that PLGA microsphere dimensions of ~25 µm, leading to pores of ~25 µm within CPC, are sufficient for bone ingrowth and allow substantial bone formation. Further, the results demonstrate that PLGA microsphere dimensions provide a tool to control bone formation for injectable CPC/PLGA bone substitutes. Copyright © 2013 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Tissue Engineering and Regenerative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.