Abstract

Distance transform (DT) (1) is used to convert a binary image that consists of object (foreground) and nonobject (background) pixels into another image in which each object pixel has a value corresponding to the minimum distance from the background by a predefined distance function. The Euclidean distance is more accurate than the others, such as city-block, chessboard and chamfer, but it takes more computational time due to its nonlinearity. By using the relative X and Y coordinates computed from the object pixel to the source mapping pixel of its neighbors as well as correction of particular cases, the Euclidean distance transformation (EDT) can be correctly obtained in just four scans of an image. In other words, the new algorithm achieves the computational complexity of EDT to be linear to the size of an image.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.