Abstract

Digitized spinal X-ray images exhibiting specific pathological conditions such as osteophytes can be retrieved from large databases using Content Based Image Retrieval (CBIR) techniques. For efficient image retrieval, it is important that the pathological features of interest be detected with high accuracy. In this study, new size-invariant features were investigated for the detection of anterior osteophytes, including claw and traction in cervical vertebrae. Using a K-means clustering and nearest neighbor classification approach, average correct classification rates of 85.80%, 86.04% and 84.44% were obtained for claw, traction and anterior osteophytes, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.