Abstract

Size-dependent oxygen reduction reaction activity (ORR) and instability of Pt nanoparticles is of great importance in proton exchange membrane fuel cell applications. In this study, the size-dependence of ORR activity on Pt nanoparticles (NPs) was investigated on high-surface-area carbon supported Pt NPs below 5 nm in acidic electrolytes using rotating disk electrode method. The ORR activity was correlated to the estimated surface coverage by OH anion from cyclic voltammogram measurements and the surface composition and electronic structure of Pt NPs, which was studied using X-ray photoemission spectroscopy, and ultraviolet photoemission spectroscopy. The results revealed a size-independent ORR activity on Pt NPs below 5 nm, which was attributed to similar surface compositions and surface electronic structures of Pt NPs below 5 nm as well as comparable OH anion coverage at the potential where ORR was evaluated. In contrast, the instability of Pt NPs under accelerated potential cycling was found to be strongly dependent on the particle size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.