Abstract

We explore mechanical properties of top down fabricated, singly clamped inverted conical GaAs nanowires. Combining nanowire lengths of 2–9 μm with foot diameters of 36–935 nm yields fundamental flexural eigenmodes spanning two orders of magnitude from 200 kHz to 42 MHz. We extract a size-independent value of Young's modulus of (45 ± 3) GPa. With foot diameters down to a few tens of nanometers, the investigated nanowires are promising candidates for ultra-flexible and ultra-sensitive nanomechanical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.