Abstract

The Achlioptas process, a percolation algorithm on random network, shows a rapid second-order phase transition referred to as explosive percolation. To obtain the transition point and critical exponent β for percolations on a random network, especially for bond percolations, we propose a new scaling analysis that is independent of the system size. The transition point and critical exponent β are estimated for the product-rule (PR) and daCosta-Dorogovtsev-Goltsev-Mendes (dCDGM) (m=2) models of the Achlioptas process, as well as for the Erdős-Rényi (ER) model, which is a classical model in which the analytic values are known. The validity of the scaling analysis is confirmed, especially for the transition point. The estimations of β are also consistent with previously reported values for the ER and dCDGM(2) models, whereas the β estimation for the PR model deviates somewhat. By introducing a parameter representing the maximum cluster size, we develop an extrapolation scheme for the critical exponent β from the simulation just at the transition point in order to obtain a more accurate value. The estimated value of β is improved compared with that obtained by the scaling analysis for the ER model and is also consistent with the β value obtained for the dCDGM(2) model, whereas its deviation from the previously reported value is larger for the PR model. We discuss the accuracy of the present estimations and draw conclusions about their reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.