Abstract

In this work, we successfully developed an intriguing preparation strategy to reduce the size-dependent effect of nanoplastics (NPLs), which is the limitation of NPLs quantification by surface-enhanced Raman scattering (SERS). This simple and low-cost technique enabled us to quantify different sizes (i.e., 100, 300, 600, and 800nm) of polystyrene nanospheres (PS NSs) in various aqueous media. The SERS substrate was simply prepared by sputtering gold particles to cover on a glass cover slide. By dissolving PS NSs in toluene and preconcentrating by coffee-ring effect, SERS measurement can quantify NPLs at a very low concentration with a limit of detection (LOD) of approximately 0.10-0.26μg/mL. The experiment was also conducted in the presence of interferences, including salts, sugars, amino acids, and detergents. The method was validated for quantitative analysis using a mixture of 100-, 300-, 600-, and 800-nm PS NSs in a ratio of 1:1:1:1 in real-world media (i.e., tap water, mineral water, and river water), which successfully approaches the evaluation of PS NSs in the range of 10-40µg/mL with an LOD of approximately 0.32-0.52µg/mL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call