Abstract
We propose a new class of multideterminantal Jastrow-Slater wave functions constructed with localized orbitals and designed to describe complex potential energy surfaces of molecular systems for use in quantum Monte Carlo (QMC). Inspired by the generalized valence bond formalism, we elaborate a coupling scheme between electron pairs which progressively includes new classes of excitations in the determinantal component of the wave function. In this scheme, we exploit the local nature of the orbitals to construct wave functions which have increasing complexity but scale linearly. The resulting wave functions are compact, can correlate all valence electrons, and are size extensive. We assess the performance of our wave functions in QMC calculations of the homolytic fragmentation of N-N, N-O, C-O, and C-N bonds, very common in molecules of biological interest. We find excellent agreement with experiments, and, even with the simplest forms of our wave functions, we satisfy chemical accuracy and obtain dissociation energies of equivalent quality to the CCSD(T) results computed with the large cc-pV5Z basis set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.