Abstract

The assembly of antigen structure is often crucial to the potency of vaccines. Currently adopted methods like animal testing and ultracentrifugation take long time and are difficult to automate for multiple samples. Here we develop a size-exclusion high-performance liquid chromatography (SE-HPLC) method to characterize the assembly of antigen structure during both manufacturing process and storage. Three important vaccine antigens including inactivated foot and mouth disease virus (FMDV), which is a virus vaccine; and two virus-like particles (VLPs) vaccines involving hepatitis B core antigen (HBcAg) VLPs, and hepatitis B surface antigen (HBsAg) VLPs, were successfully analyzed using commercially available TSK gel columns with pore size above 45nm. Combined with other analytical methods including SDS–PAGE, dynamic light scattering, wavelength scan, and multi-angle laser light scattering, the SE-HPLC method was proven to be a simple, rapid, and reliable tool for antigen particles assembly analysis. Specifically, for FMDV whole virus particle, SE-HPLC was used to analyze 146S content in vaccine preparations and the thermal dissociation of the 146S. For HBcAg-VLPs that are expressed in recombinant Escherichia coli, its expression level during cell culture process was quantitatively monitored by SE-HPLC. The SE-HPLC also showed applicability for quality check of HBsAg vaccine preparations by monitoring the product consistency of different lot number and the product stability during storage. Results shown in this work clearly demonstrated that SE-HPLC method has potential as a versatile alternative technology for control of the final product by both manufacturers and the regulatory agencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call